Critical exponents and Scaling Properties for the Chaotic Dynamics of a Particle in a Time-Dependent Potential Barrier
نویسندگان
چکیده
Some scaling properties of the chaotic sea for a particle confined inside an infinitely deep potential box containing a time varying barrier are studied. The dynamics of the particle is described by a two-dimensional, nonlinear and area-preserving mapping for the variables energy of the particle and time. The phase space of the model exhibits a mixed structure with Kolmogorov– Arnold–Moser islands, chaotic seas and invariant spanning curves limiting the chaotic orbits. Average properties of the chaotic sea including the first momenta and the deviation of the second momenta are obtained as a function of: (i) number of iterations (n), and (ii) time (t). By the use of scaling arguments, critical exponents for the ensemble average of the first momenta are obtained and compared for both cases (i) and (ii). Scaling invariance of the average properties for the chaotic sea is obtained as a function of the control parameters that describe the model.
منابع مشابه
Scaling properties for a classical particle in a time-dependent potential well.
Some scaling properties for a classical particle interacting with a time-dependent square-well potential are studied. The corresponding dynamics is obtained by use of a two-dimensional nonlinear area-preserving map. We describe dynamics within the chaotic sea by use of a scaling function for the variance of the average energy, thereby demonstrating that the critical exponents are connected by a...
متن کاملDescribing a Phase Transition in the Dynamics of a Particle Moving in a Time-dependent Potential Well
Some dynamical properties for a classical particle confined in an infinitely deep box of potential containing a periodically oscillating square well are studied. The dynamics of the system is described by a two dimensional non-linear area preserving mapping for the variables energy and time. The phase space is mixed and the chaotic sea is described using scaling arguments. Thus, critical expone...
متن کاملChaotic properties of a time-modulated barrier.
Some chaotic properties of a classical particle interacting with a time-modulated barrier are studied. The dynamics of this problem is obtained by use of a two-dimensional nonlinear area-preserving map. The chaotic low energy region is characterized in terms of Lyapunov exponents. The time that the particle stays trapped in the well is such that the distributions of successive reflections, and ...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملA Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 22 شماره
صفحات -
تاریخ انتشار 2012